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(even.at a small Ru). This increase in the strength of the natural convection in a porous medium, Int. J. Heat Mass 

convective flow can also be observed in Fig. 2. TrMsfer 28,9@-918 (1985). 
To summarize, the flow and temperature fields are sig- 

nificantly modified by the inclusion of mass transfer effects. 
In the presence of a concentration gradient, flow can be either 
aided or retarded, depending on the sign of the buoyancy 
ratio N. The Lewis number is observed to have a stronger 
influence on the concentration field than it does on the flow 
and temperature fields. In addition, it amplifies the results 
produced by the buoyancy ratio. 
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INTRODUCTION 

MANY practical engineering applications in radiative heat 
transfer require the evaluation of geometric configuration 
factors between a cylinder and a coaxial axisymmetric body, 
such as pipe exhaust systems (including a rocket and its 
plume) and annular radiative fins. Although view factors for 
such geometries resist closed-form solutions, the number of 
required integrations for a numerical calculation could be 
reduced substantially if analytic expressions are obtained for 
the configuration factors between differential elements of 
the axisymmetric body and the cylinder. In this note, exact 
solutions are derived for shape factors between differential 
elements of arbitrary orientation and cylinders. Using these 
derivations, we illustrate the calculation of view factors 
between cylinders and general coaxial bodies via a method 
in which only a single numerical integration need be per- 
formed [I]. 

View factor from a dljJerential element to a cylinder 
The configuration shown in Fig. 1 depicts a differential 

area dA2 and a cylinder Cy. The unit normal vector to dA2 
lies in the pz plane. If the angle 6 is less than 
tan-‘[HP/(P’-l)], where H = h/r and P =p/r are the 
dimensionless cylinder height and distance from the differ- 
ential element to the axis of symmetry, respectively, the con- 
tour of the section of the cylinder which is visible to the 
differential area consists of four curves: two vertical lines 
?% and DE, the circular arc m, and the elliptic arc BCD. 
The view factor from the differential area to the cylinder can 

t Present address: Department of Mechanical Engin- 
eering, University of Florida, Gainesville, FL 32611, U.S.A. 

be determined by integratingover this contour [2]. Since 
the line intesl over arc BCD is identical to that over the 
horizontal BD, only the contour BDEFGB need be evalu- 
ated. The curves describing this contour can be expressed in 
the nondimensional form as 

GB X=J(P2-1)/P, Y= l/P, z=z 

DE X = -J(PZ- 1)/P, Y = I/P, z = z 

DB X=X, Y=l/P, Z=(P’-l)/Ptan0 

EFG X=sinJ, Y=cos/?, Z=H. 

FIG. 1. Cylinder and differential element configuration. 
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Integrating line GB from 2 = H to (P*- l)/Ptan Qiline m 
from X = J(f2- 1)/p to - J(p2~p, line DE from 
Z=(P’-l)/Ptan0toH,andarcEFGfrom/3=-g,to 
/3,,, where go = cos- ’ (l/P), yields the view factor from the 
differential area dA r to cylinder Cy 

>I Hsin 0 
-tan6 +- 

2P 

l+P’+H’ 

J((lfP2+H2)*-4P2) 

2(1-P*-H’) 

J((l+P2+H*)2-4P2) 

+cos-’ (I/P) 
11 

. (1) 

Equation (1) in the limiting case of 0 = 0, reduces to the 
solution given in ref. [3]. 

If tan-’ [HP/(P’- I)] Q 0 < tan-’ [H/(P- l)], the view 
factor from the differential area to the cylinder will be ident- 
ical to that from the differential area to the disk section 
traced out by EFGE. The contours of the disk section are 
defined with /? equal to cos- ’ A, where A = (P-H/tan 0). 
This view factor can be expressed as 

J((l+P2+H’)*-4P*) 

2(1 -P2-H*) 

J((1+P2+H2)2-4P2) 

+cos-‘A . I> (2) 
Figure 2 shows the variation of FdAI_cV with angle t? for a 

number of P values. As expected, FdA:_cv has a maximum 
value when the normal to the differential element is parallel 
to the axis of symmetry (i.e. at an angle 0 = 0). and drops 
off sharply as 0 increases. At values of 0 greater than 
tan- ’ [H/(P- I)] the differential element will not see the 
cylinder, and thus Fdt2_cv will equal zero. As the distance P 
between the differenttal element from the axis of symmetry 
increases the view factor will decrease, since a smaller fraction 
of radiation leaving the element will reach the cylinder. 

View factor from a cylinder IO an axisymmetric body 
A concise method has been developed for view factor 

calculations between specific axisymmetric bodies (sphere 
[I], disk [4], and cone [5]) and general coaxial axisymmetric 
bodies. This method can also be used to calculate the view 
factors between cylinders and coaxial axisymmetric bodies 
by employing equations (I) and (2). 

Figure 3 shows the cylinder and a differential conical ring, 
formed by rotating the differential element about the axis 
of symmetry of the cylinder. Applying the reciprocity rule, 
noting the external surface area of the cylinder is 2x&, and 
integrating over the surface of the differential conical ring, 
the view factor from the cylinder to the ring can be expressed 
as 

dFcy_1, = 

where y is the distance from the ring to the axis of symmetry 
and dl the differential length of the ring. 

An axisymmetric body can be generated by letting the 
distance y equal the functional description of the body J(x). 
where x is the distance along the axis of symmetry. Noting 
that dl = J(I +/‘($?,I dx, the view factor from the cylinder 
to the axisymmetric body can be found via a single inte- 
gration 

Pcv-8 = ; 
+W. 

s, 
J(x) Jv +fW)F,,,-, dx. (4) 

M” 

The limits of integration are defined as the extremal points 

0.0 25.0 50.0 75.0 

8 <degrees) 

FIG. 2. Radiation view factor from a differential element dAl at an angle 0 to the outer surface of a cylinder. 
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FIG. 3. Cylinder-coaxial diffenntial conical ring geometry. 
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FIG. 4. Radiation view factor from a cylinder to a coaxial paraboloid. 
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FIG. 5. Radiation view factor from a cylinder to a coaxial axisymmetric body generated via a power law. 

where the axisymmetric body no longer sees the outer surface 
of the cylinder. They are dependent on the function generator 
j(x), as well as the cylinder height and radius. Note, this 
formulation holds true only if there are no obstructions 
between any part of the axisymmetric body and the cylinder. 
To illustrate the usefulness of this approach, the view factors 
between cylinders and coaxial axisymmetric bodies formed 
via the power law equation, j(x) = Cx”, will be examined. 

First consider the case of an axisymmetric body in the 
shape of a paraboloid, where n = l/2. Figure 4 shows the 
view factor as a function of the non-dimensional cylinder 
height H for a variety of coefficients C. The view factor 
decreases as H increases because a smaller fraction of radiant 
energy leaving the cylinder will be intercepted by the axisym- 
metric body. Since large values of C correspond to less 
concave paraboloids, view factors increase significantly as C 
increases. In the limiting case, as C approaches infinity, the 
paraboloid forms an infinite annular disk, for which the view 
factor equals l/2. 

Figure 5 illustrates the variation of the view factor with 
changes in the exponent n, where the coefficient C is kept at 
a constant value of unity. As the exponent increases towards 
a value of 1 (the case of a cone of slope C), the view factor 
increases. Again, this is because the concavity of the axisym- 
metric body decreases with increasing II. 

CONCLUSION 

Exact expressions for the radiation shape factor between 
a cylinder and a differential element of arbitrary orientation 
are derived. Based on these formulae a general method is 

described for calculating the view factor from the cylinder to 
a coaxial axisymmetric body using only a single numerical 
integration. The method is illustrated for axisymmetric 
bodies with function generators described by the power law 
equation. It is foreseen that such a procedure will be useful 
for radiation heat transfer calculations between cylindrical 
bodies and high density exhaust gases and between annular 
radiative fins and their bases. 
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